IIT Guwahati researchers design engineered surfaces to detect, prevent coronavirus – education

0
10

Researchers at the Indian Institute of Technology (IIT), Guwahati have developed methods to detect and prevent the novel coronavirus the usage of bio-interface interactions between the virus and the surface spike protein.

According to the team of researchers, the novel coronavirus (SARS CoV-2) is composed of inner nucleic acid which is covered with surface spike glycoprotein and the engineered surfaces may also be potentially applied for the detection in addition to prevention of COVID-19 — the disease caused by the virus.

“So far we are the usage of antibody-based assays and RT-PCR based methods for testing all over pandemic. Then again, longer assay time, cost, complex procedures and false positive or negative results are a couple of bottlenecks of these methods,” Lalit M Pandey, associate professor, Branch of Biosciences and Bioengineering, told PTI.

“The bio-interface interactions between virus surface spike protein and the surface may also be explored for the rapid detection of coronavirus,” he said.

“The interplay between the spike protein and contacting surfaces constitutes the key step of transmission of coronavirus. Thus, surface engineering, on one hand, shall facilitate a quick detection method and alternatively, it would be a very protected method of protection against the virus, as an example when applied on PPEs,” he added.

The team’s research on surface modifications and analysis of the bio-interfacial (protein-surface) interactions have been published in reputed journals like Materials Science and Engineering C, Applied Surface Science, Langmuir, J. Phys. Chem. C and ACS Biomaterials Science and Engineering.

“We have developed an interesting method of surface modifications by forming more than a few self-assembled monolayers (SAMs) on different surfaces, which result in a variety of surface hydrophobicity depending on the terminal functional groups with nano-scale smooth surfaces. The formation of SAMs involves a fast attachment followed by a slow reorientation step,” Pandey said.

“Mixed SAMs have been prepared to design the surface with intermediate wettability. The thumb rule of increase in the adsorbed amount of protein with an increase in surface hydrophobicity does not hold true for all systems. It is because protein adsorption is a complex process and depends on the hydrophobicity of both surfaces and proteins,” he said.

Hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water.

The research has revealed that a protein adapts to different conformations depending on surface properties.

“Thus, the characteristics of protein may also be tuned by engineered surfaces for more than a few applications including biosensors, implants, and drug delivery. A recent special outline suggested that the engineered sensor surface may also be applied in Quartz Crystal Microbalance-based techniques, which are known for label-free, rapid and real-time detection with sensitivity,” Pandey said.

“The surfaces based strategies not only offer an benefit of rapid virus detection from swab samples but also allow the reuse of the same surface over a couple of cycles (samples),” he said.

“The role of newly developed engineered surfaces is, on the other hand, to destabilise the viral envelope protein through surface-protein interactions, disintegrate, and in the end, inactivate the viruses,” Pandey said.

“Thus, the surface treatments of personal protective equipment (PPE), which possess antiviral properties and prevent the contagious infections of coronavirus. The surfaces of PPEs may also be engineered to reach strong surface-protein interactions,” he said.

Top stories / News / Career & Education

LEAVE A REPLY

Please enter your comment!
Please enter your name here