Indian researchers working towards developing effective vaccine strategies against SARS-CoV-2 and HIV – health


Indian Institute of Science claimed on Tuesday that researchers led by Raghavan Varadarajan, Professor at IISc’s Molecular Biophysics Unit, are working towards developing effective vaccine strategies against two viruses: SARS-CoV-2 and HIV.

In two studies published up to now week, they reported the design of a ‘heat-tolerant’ COVID-19 vaccine candidate and a rapid method to identify particular regions on the HIV envelopeprotein that are targeted by antibodies, which can help design effective vaccines, an IISc press release said.

The studies were published in the Publication of Organic Chemistry and the Proceedings of the National Academy of Sciences respectively, according to Bengaluru-based IISc.

The COVID-19 vaccine candidate contains part of the spike protein of the novel coronavirus called the Receptor Binding Domain (RBD) – the region that helps the virus stick to the hosts cell.

It is being developed by Varadarajans lab in collaboration with Mynvax, a startup co-founded by him and incubated at IISc, in addition to several other institutes.

“When tested in guinea pig models, the vaccine candidate triggered a strong immune response”, the remark said.

“Surprisingly, it also remained steady for a month at 37C, and freeze-dried versions could tolerate temperatures as high as 100C.

Such ‘warm’ vaccines will also be stored and transported without expensive cooling equipment to remote areas for mass vaccination – most vaccines want to be stored between 2-8C or even cooler temperatures to keep away from losing their potency”, it said.

In comparison to newer types such as mRNA vaccines, making a protein-based vaccine like this will also be scaled up easily in India where manufacturers have been making similar vaccines for decades, IISc said.

There is another difference between the vaccine candidate being developed by Varadarajans team and plenty of other COVID-19 vaccines in the works: it only uses a particular a part of the RBD, a string of 200 amino acids, instead of all the spike protein.

The team inserted genes coding for this part via a carrier DNA molecule called a plasmid, into mammalian cells, which then churned out copies of the RBD section.

They found that the RBD formulation used to be just as good as the full spike protein in triggering an immune response in guinea pigs, but a lot more steady at high temperatures for extended periods – the full spike protein quickly missing its activity at temperatures above 50C, according to the remark.

“Now we need to get funds to take this forward to clinical development, says Varadarajan.

This would include safety and toxicity studies in rats along side process development and GMP manufacture of a clinical trial batch, before they’re tested in humans.

“Those studies can cost approximately Rs 10 crore. Unless the government funds us, we might not have the ability to take it forward”, he added.

The second one study focused on HIV, the virus that causes AIDS, a disease for which there’s no vaccine despite decades of research.

The team, which included researchers from more than one institutes, sought to pinpoint which parts of the HIVs envelope protein are targeted by neutralising antibodies – the ones that in fact block virus entry into cells, not just flag it for other immune cells to find.

According to the authors, vaccines based on these regions might induce a better immune response. To map such regions, researchers use methods like X-ray crystallography and cryo- electron microscopy, but these are time-consuming, complicated and expensive.

Subsequently, Varadarajan and his team explored alternative approaches, and eventually arrived at a simpler, yet effective solution.

First, they mutated the virus in order that an amino acid called cysteine would pop up in several places on the envelope protein. They then added a chemical label that would stick to these cysteine molecules, and after all, treated the virus with neutralising antibodies.

Whether the antibodies could not bind to an important sites on the virus because they were blocked by the cysteine label, the virus could continue to exist and cause infection.

Those sites were then identified by sequencing the genes of the surviving mutant viruses.

“This can be a rapid way of figuring out where antibodies are binding and turns out to be useful for vaccine design,” says Varadarajan. It could also help in concurrently testing how different peoples sera samples – the portions of their blood containing antibodies – react to the same vaccine candidate or virus, he says. “In precept, researchers could adapt this methodology to any virus, including SARS-CoV-2”, he said.

(This story has been published from a wire agency feed without modifications to the text. Only the headline has been changed.)

Follow more stories on Facebook and Twitter

Top stories / News


Please enter your comment!
Please enter your name here